## Exercise 39

Find the critical numbers of the function.

$$
F(x)=x^{4 / 5}(x-4)^{2}
$$

## Solution

A critical number is a value of $x$ for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x}\left[x^{4 / 5}(x-4)^{2}\right] \\
& =\left[\frac{d}{d x}\left(x^{4 / 5}\right)\right](x-4)^{2}+x^{4 / 5}\left[\frac{d}{d x}(x-4)^{2}\right] \\
& =\left(\frac{4}{5} x^{-1 / 5}\right)(x-4)^{2}+x^{4 / 5}\left[2(x-4)^{1} \cdot \frac{d}{d x}(x-4)\right] \\
& =\frac{4(x-4)^{2}}{5 x^{1 / 5}}+x^{4 / 5}[2(x-4) \cdot(1)] \\
& =\frac{4(x-4)^{2}}{5 x^{1 / 5}}+2(x-4) x^{4 / 5} \times \frac{5 x^{1 / 5}}{5 x^{1 / 5}} \\
& =\frac{4(x-4)^{2}}{5 x^{1 / 5}}+\frac{10(x-4) x}{5 x^{1 / 5}} \\
& =\frac{4(x-4)^{2}+10(x-4) x}{5 x^{1 / 5}} \\
& =\frac{4\left(x^{2}-8 x+16\right)+\left(10 x^{2}-40 x\right)}{5 x^{1 / 5}} \\
& =\frac{\left(4 x^{2}-32 x+64\right)+\left(10 x^{2}-40 x\right)}{5 x^{1 / 5}} \\
& =\frac{14 x^{2}-72 x+64}{5 x^{1 / 5}}
\end{aligned}
$$

Set what's in the numerator and denominator equal to zero and solve for $x$.

$$
\begin{array}{rlrl}
14 x^{2}-72 x+64 & =0 & 5 x^{1 / 5} & =0 \\
2\left(7 x^{2}-36 x+32\right) & =0 & x & =0 \\
2(7 x-8)(x-4) & =0 & x & =0 \\
x=\frac{8}{7} \text { or } x & =4 & x & =0
\end{array}
$$

